Disclosures

João A.C. Lima, M.D.

Receives grant /research support from

- Toshiba Medical Systems
- Bracco Diagnostics
- Federal Grant Support: NHLBI, NIDDK, and NIA

Diagnostic Performance of Combined Noninvasive Coronary Angiography and Myocardial Perfusion Imaging Using 320-row Detector Computed Tomography: The CORE320 Multicenter International Study João A.C. Lima, M.D., Johns Hopkins Hospital

Background

- The benefits of revascularization are highest in patients who have coronary stenoses that are flow limiting and hemodynamically significant.
- Invasive angiography and CT angiography are limited in delineating flowlimiting lesions which are detected by perfusion imaging or invasive FFR.
- A single test which can non invasively evaluate the severity of a lesion and the hemodynamic significance is desirable for the management of patients with symptomatic CAD.

Main Objectives/Study Design

To evaluate:

- The diagnostic performance of combined CTA and CTP to identify patients with flow limiting CAD compared with invasive angiography and SPECT-MPI
- Incremental value of CTP above CTA alone
- Prediction of coronary revascularization vs. ICA + SPECT

 381 patients from 16 hospitals in 8 countries who were clinically referred for ICA underwent SPECT-MPI and a combined CT angiography and myocardial perfusion scan.

Core Laboratory Image Analysis

Coronary Image Analysis

Angiography Core Lab

CT Angiography Core Lab

Myocardial Perfusion Analysis

SPECT-MPI Core Lab

CT Perfusion Core Lab

Two readers

• Differences resolved by consensus

Entire coronary tree analyzed

- 19 segment model
- Stented segments included
- Visual assessment on all segments
- Stenosis <u>></u> 30% quantified
- Maximum % stenosis

Two readers

- Double Blinded Analysis
- Differences resolved by consensus
- 13 Segment myocardial model
- Visual assessment
 - 0 = normal
 - 1 = mild perfusion deficit
 - 2 = moderate perfusion deficit
 - 3 = severe perfusion deficit

Baseline Characteristics

Age – Median [IQR]	62 [56-68]
Men – number [%]	258 [66%]
Body Mass Index – Median [IQR]	27 [24-30]
Hypertension – number [%]	302 [78%]
Diabetes – number [%]	132 [34%]
Dislipidemia – number [%]	261 [68%]
Previous MI – number [%]	95 [25%]
Smoking (Current + Former) – number [%]	202 [53%]
Prior PCI – number [%]	112 [29%]
Family history of CAD – number [%]	167 [45]
Creatinine – mg/dl – Median [IQR]	0.9 (0.7-1.0)

Results

Incremental Value of CTA-CTP over CTA (Reference Standard: 50% by ICA with SPECT-MPI defect)

1.0 0.9-P<0.001 0.8 0.7 Sensitivity 0.6-0.5-CTA-CTP ROC Area = **0.87** 0.4 95% CI [0.83-0.91] 0.3 CTA ROC Area = 0.81 0.2 95% CI [0.77-0.86] 0.1 0.0-0.0 0.9 1.0 0.1 0.2 0.3 0.40.5 0.6 0.70.8 1-Specificity

CTA-CTP vs. ICA/SPECT to predict Vessel Level Revascularization (Reference Standard: *Revascularization at 30 days*)

Patient Based Results – Known CAD Excluded

Patient-Based Analysis for participants without history of CAD (Reference Standard: 50% by ICA with a corresponding myocardial perfusion defect on SPECT-MPI)

Patients with Known CAD Excluded

	Sensitivity	Specificity	PPV	NPV
CTA alone	93	60	46	96
≥ 50% Stenosis (95% Cl)	(84-98)	(52-67)	(37-55)	(91-99)
CTP SSS				
0	97	58	45	98
	(89-100)	(50-65)	(36-54)	(93-100)
1	90	67	49	95
	(80-96)	(59-74)	(40-59)	(89-98)
2	89	69	51	94
	(78-95)	(61-76)	(41-60)	(89-98)
3	84	74	54	93
	(72-92)	(67-81)	(43-64)	(87-96)
4	80	80	59	92
	(68-89)	(73-86)	(48-70)	(86-96)
	71	87	65	89
CORE 320	(57-82)	(80-91)	(52-77)	(83-93)

Conclusions

 Combined CTA-CTP can detect flow-limiting stenoses defined by ICA (50% or greater) with an associated SPECT-MPI defect.

• CT perfusion adds significantly to the diagnostic power of CT angiography alone.

 The combination of CTA & CTP in one non-invasive exam is useful in identifying the patients who will benefit the most from revascularization and to guide the management of CAD.

