GIFT: Genetics Informatics Trial of Warfarin Therapy for Deep Venous Thrombosis Prevention

Brian F. Gage, MD, MS1, Anne R. Bass, MD2, Hannah Lin1,3, Scott C. Woller, MD4,5, Scott M. Stevens, MD4,5, Noor Al-Hammadi, MBChB, MPH1 and Charles S. Eby, MD on behalf of the GIFT Investigators

1 Washington University in Saint Louis, St. Louis;
2 Hospital for Special Surgery, New York;
3 University of Massachusetts, Worcester;
4 Intermountain Healthcare, Salt Lake City;
5 University of Utah, Salt Lake City;

March 19, 2017
Funded by NIH (R01 HL097036, UL1 TR000448) and Centers for Medicare & Medicaid Services
The Problem: Warfarin works, but

Warfarin causes more emergency department visits among the elderly than any other drug (N. Shehab *JAMA* 2016).

INR = International Normalized Ratio. Values > 3 or 4 predispose to bleeding.
Genetics Informatics Trial (GIFT) of Warfarin Therapy for DVT Prevention

• Hypothesis: Pharmacogenetic dosing of warfarin therapy decreases the rate of adverse events vs. clinical-algorithm dosing
CYP2C9
CYP1A1
CYP1A2
CYP3A4
Oxidized Vitamin K
Reduced Vitamin K
O2
Hypofunctional
F. II, VII, IX, X
Functional
F. II, VII, IX, X
GGCX
VKORC1
CO2
Warfarin
CALU
K1-OH
CYP4F2
CYP2C9
R-warfarin
S-warfarin

Gage B & Eby C. Pharmacogenomics J. 2004
Warfarin Pharmacogenetics

• Cytochrome P450 2C9 (CYP2C9) SNPs slow S-warfarin metabolism
• VKORC1-1639 G>A Vitamin K epoxide reductase increases warfarin sensitivity
• CYP4F2 V433M reduces vitamin K clearance
2 x 2 Factorial Design

Genetic Dosing

- INR 2.5
- INR 1.8

Clinical Dosing

- INR 2.5
- INR 1.8
Genotyping Strategy

• Initially: Genotyping at clinical sites with retrospective confirmation and DNA banking by Central Laboratory

• Later: Central laboratory provided pre-surgery genotyping for all clinical sites

• Genotype Method: Predominantly GenMarkDx eSensor instrument and reagents
Randomization & Double Blinding

• Randomized 1:1 to genetic vs. clinical dosing
 – stratified by arthroplasty site, self-identified race, and center: HSS, Intermountain Healthcare, Rush, University of Utah, UT Southwestern, and WUSTL

• Participants and study personnel were blind to study arm and genotype, but not to warfarin dose
Primary Outcome Was a Composite of:

• Major bleeding within 30 days,
• INR ≥ 4 within 30 days,
• Death within 30 days, and
• Venous thromboembolism (VTE) confirmed by objective testing within 60 days of arthroplasty
 – Patients were screened for DVT using Duplex US
Statistical Analyses

• Modified intention-to-treat basis
 – included all randomized participants who received 1+ doses of warfarin.

• A priori high-risk subgroup:
 – Participants whose clinical and genetic predicted doses (on day 1) differed by ≥ 1.0 mg/day.

• Two-sided alpha of 0.05, partitioned:
 – 0.044 alpha required in total cohort
 – Remaining alpha in high-risk subgroup

• 1600 participants provided 80% power
GIFT CONSORT Diagram

Randomized (n=1650)

Allocated to Genetic Dosing (n=831)
- Received allocated intervention (n=808)
- Did not receive intervention (n=23)

Allocated to Clinical Dosing (n=819)
- Received allocated intervention (n=789)
- Did not receive intervention (n=30)

Follow-Up

Lost to follow-up before day 30 (n=1)

Analysis

Lost to follow-up before day 30 (n=0)

Analyzed (n=808)
- Excluded from analysis (n=0)
- Duplex US missing (n=36)

Analyzed (n=789)
- Excluded from analysis (n=0)
- Duplex US missing (n=31)
GIFT Participants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Genetic N=808</th>
<th>Clinical N=789</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years: mean (SD)</td>
<td>72.2 (5.3)</td>
<td>72.0 (5.5)</td>
</tr>
<tr>
<td>Indication: N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip Replacement</td>
<td>207 (25.6)</td>
<td>199 (25.2)</td>
</tr>
<tr>
<td>Knee Replacement</td>
<td>601 (74.4)</td>
<td>590 (74.8)</td>
</tr>
<tr>
<td>Female: N (%)</td>
<td>522 (64.6)</td>
<td>496 (62.9)</td>
</tr>
<tr>
<td>Race: N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>52 (6.4)</td>
<td>50 (6.3)</td>
</tr>
<tr>
<td>American Indians or Native</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Asian or Indian Subcontinent</td>
<td>16 (2.0)</td>
<td>13 (1.7)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>735 (91.0)</td>
<td>719 (91.1)</td>
</tr>
<tr>
<td>Statin†: N (%)</td>
<td>365 (45.2)</td>
<td>402 (51.0)</td>
</tr>
<tr>
<td>Diabetes: N (%)</td>
<td>116 (14.4)</td>
<td>105 (13.3)</td>
</tr>
</tbody>
</table>

† P = 0.02.
From Days 1-11, WarfarinDosing.org Provided Guidance; Clinicians Did the Dosing

<table>
<thead>
<tr>
<th>Therapy Date</th>
<th>INR</th>
<th>Anticipated maintenance dose (mg/d)</th>
<th>Dose (mg) Taken</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 05-01-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 05-02-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 05-03-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 05-04-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Today’s recommendation: ~4.0 mg
Maintenance estimate: ~3.6 mg/day.
From Days 1-11, WarfarinDosing.org Provided Guidance; Clinicians Did the Dosing

<table>
<thead>
<tr>
<th>Therapy Day</th>
<th>Date</th>
<th>INR</th>
<th>Today’s recommendation (mg)</th>
<th>Anticipated maintenance dose (mg/d)</th>
<th>Dose (mg) Taken</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05-01-2011</td>
<td></td>
<td></td>
<td>1.5mg</td>
<td>4.0</td>
<td>PM</td>
</tr>
<tr>
<td>2</td>
<td>05-02-2011</td>
<td></td>
<td></td>
<td>1.5mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>05-03-2011</td>
<td></td>
<td></td>
<td>1.5mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>05-04-2011</td>
<td></td>
<td></td>
<td>1.5mg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Today’s recommendation: ~4.0 mg
Maintenance estimate: ~3.6 mg/day.
Table 1: Primary Results (N = 1597)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Genotype Group, N = 808, % (N)</th>
<th>Clinical Group, N = 789, % (N)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major bleed (days 1-30)</td>
<td>0.25% (2)</td>
<td>1.01% (8)</td>
<td>0.062</td>
</tr>
<tr>
<td>INR ≥ 4 (days 1-30)</td>
<td>6.9% (56)</td>
<td>9.8% (77)</td>
<td>0.041</td>
</tr>
<tr>
<td>VTE (days 1-60)</td>
<td>4.1% (33)</td>
<td>4.8% (38)</td>
<td>0.48</td>
</tr>
<tr>
<td>Death (days 1-30)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>10.8% (87)</td>
<td>14.7% (116)</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Genetic dosing reduced the relative risk of adverse outcomes by 27% \((RR=0.73; 95\% \ CI: 0.56 – 0.95)\).
Benefit of Genetic Dosing Was Consistent:

- There was no significant interaction in any of these subgroups
 - African-Americans
 - $CYP2C9$ genotype
 - Target INR 2.5 vs. 1.8
 - Hip vs. knee arthroplasty
Secondary Outcome: Percentage of Time in the Therapeutic Range (PTTR) During Days 4-28 of Warfarin Therapy

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Genotype-Group</th>
<th>Clinical Group</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>PTTR</td>
<td>N</td>
</tr>
<tr>
<td>Overall</td>
<td>803</td>
<td>54.7</td>
<td>785</td>
</tr>
<tr>
<td>High-risk</td>
<td>321</td>
<td>55.5</td>
<td>333</td>
</tr>
<tr>
<td>Stratified by Target INR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target 2.5 (2.0-3.0)</td>
<td>399</td>
<td>56.2</td>
<td>389</td>
</tr>
<tr>
<td>Target 1.8 (1.5-2.1)</td>
<td>404</td>
<td>53.3</td>
<td>396</td>
</tr>
</tbody>
</table>
GIFT Conclusions

• Algorithm-assisted warfarin dosing is safe
 – Dosing algorithms from WarfarinDosing.org should be integrated into EMRs

• Genotype-guided dosing reduced the relative risk of adverse outcomes by 27%
 – Improved INR control, especially among high-risk subgroup.

Funded by NIH (R01 HL097036, UL1 TR000448) and Centers for Medicare & Medicaid Services