Ablation vs. Amiodarone for Treatment of Atrial Fibrillation in Patients with Congestive Heart Failure and an Implanted ICD/CRTD (AATAC-AF in Heart Failure)

Luigi Di Biase, MD, PhD, FACC, FHRS

Section Head of Electrophysiology at Albert Einstein and Montefiore Hospital, New York, USA;
Associate Professor, Albert Einstein College of Medicine at Montefiore Hospital, New York, USA;
Adjunct Associate Professor Department of Biomedical Engineering, University of Texas, Austin, Texas, USA;
Senior Researcher Texas Cardiac Arrhythmia Institute at St. David’s Medical Center, Austin, Texas, USA;
Assistant Professor Department of Cardiology, University of Foggia, Foggia, Italy

Email: dibbia@gmail.com
Ablation vs. Amiodarone for Treatment of Atrial Fibrillation in Patients with Congestive Heart Failure and an Implanted ICD/CRTD (AATAC-AF in Heart Failure)

ClinicalTrials.gov Identifier: NCT00729911/ P.I. Andrea Natale

Luigi Di Biase, Prasant Mohanty, Sanghamitra Mohanty, Pasquale Santangeli, Chintan Trivedi, Dhanunjaya Lakkireddy, Madhu Reddy, Pierre Jais, Sakis Themistoclakis, Antonio Dello Russo, Michela Casella, Gemma Pelargonio, Maria Lucia Narducci, Robert Schweikert, Petr Neuzil, Javier Sanchez, Rodney Horton, Salwa Beheiry, Richard Hongo, Steven Hao, Antonio Rossillo, Giovanni Forleo, Claudio Tondo, J. David Burkhardt, Michel Haissaguerre, Andrea Natale

- Texas Cardiac Arrhythmia Institute at St. David’s Medical Center, Austin, Texas, USA;
- California Pacific Medical Center, San Francisco, California, USA;
 - University of Kansas, Kansas City, USA;
 - University of Sacred Heart, Rome, Italy;
 - University of Tor Vergata, Rome, Italy;
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy;
 - Ospedale dell’ Angelo, Mestre, Venice, Italy;
- Hôpital Cardiologique du Haut Lévêque, Université Victor-Segalen Bordeaux, France;
 - Akron General Hospital, Akron, Ohio, USA;
- Department of Cardiology, Na Homolce Hospital, Roentgenova 2, Prague, Czech Republic
DISCLOSURES

I am a consultant for

✓ Biosense Webster
✓ St Jude Medical

I received speaker honoraria/travel expense from

✓ Atricure
✓ Biotronik
✓ Medtronic
✓ Boston Scientific
✓ Epi EP
BACKGROUND

- Trans-catheter ablation represents a valid treatment option in patients with drug-refractory symptomatic atrial fibrillation (AF).

- The majority of catheter ablation trials have mainly enrolled patients with preserved left ventricular (LV) systolic function and paroxysmal AF.

- In these patients the ablative treatment has shown to be effective in reducing morbidity, improving the quality of life (QoL) and functional capacity.

- However, a significant number of patients with AF also have LV systolic dysfunction.
AF and heart failure (HF) frequently coexist and are often associated with several common predisposing risk factors such as hypertension, coronary artery disease (CAD), structural heart disease (non-ischemic, valvular), diabetes mellitus, obesity and obstructive sleep apnea (OSA).

Importantly, the prevalence of AF increases with HF severity, ranging from 5% in functional class I patients to approximately 50% in class IV patients.

Also, the prevalence of HF in patients with AF has been estimated at 42%. The combination of HF and AF lead to deleterious hemodynamic and symptomatic consequences.

Rhythm control with antiarrhythmic drugs (AADs) has not shown satisfactory results in randomized trials both in patients with or without HF.
Heart Failure

Atrial Fibrosis

- LA volume & pressure overload
- Angiotensin II & Aldosterone
- Atrial Hypertrophy
- Altered Atrial Refractoriness
- Sympathetic Tone
- Atrial Stretch
- Triggered Ectopic Activity - Heterogeneous Conduction

Neurohumoral changes:

- Modulation by autonomic influences

Stretch activated Channels

Rapid ventricular rate:
- Energy Depletion
- Remodeling
- Ischemia
- Adnl Ca²⁺ Handling

Irregular R-R Intervals - Variability

Loss of atrial contraction

Atrial Fibrillation
BACKGROUND

Outcomes in Heart Failure Patients With Catheter Ablation
RFCA in Pts with Left Ventricular Dysfunction

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Year</th>
<th>Design</th>
<th>Pt. N</th>
<th>Mean Age</th>
<th>Mean LVEF</th>
<th>AF Type</th>
<th>FU (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al.</td>
<td>2004</td>
<td>Cohort</td>
<td>94</td>
<td>57</td>
<td>36</td>
<td>All</td>
<td>6</td>
</tr>
<tr>
<td>Hsu et al.</td>
<td>2004</td>
<td>Case-Control</td>
<td>58</td>
<td>56</td>
<td>35</td>
<td>All</td>
<td>12</td>
</tr>
<tr>
<td>Gentlesk et al.</td>
<td>2007</td>
<td>Cohort</td>
<td>67</td>
<td>42</td>
<td>42</td>
<td>PAF, PerAF</td>
<td>3-6</td>
</tr>
<tr>
<td>Efremidis et al.</td>
<td>2007</td>
<td>Cohort</td>
<td>13</td>
<td>54</td>
<td>36</td>
<td>PAF, PerAF</td>
<td>9</td>
</tr>
<tr>
<td>Lutomsky et al.</td>
<td>2008</td>
<td>Cohort</td>
<td>18</td>
<td>56</td>
<td>41</td>
<td>PAF</td>
<td>6</td>
</tr>
<tr>
<td>Khan et al.</td>
<td>2008</td>
<td>RCT</td>
<td>41</td>
<td>60</td>
<td>27</td>
<td>All</td>
<td>6</td>
</tr>
<tr>
<td>De Potter et al.</td>
<td>2010</td>
<td>Case-Control</td>
<td>26</td>
<td>49</td>
<td>43</td>
<td>All</td>
<td>6</td>
</tr>
<tr>
<td>Choi et al.</td>
<td>2010</td>
<td>Case-control</td>
<td>15</td>
<td>56</td>
<td>37</td>
<td>PAF, PerAF</td>
<td>16</td>
</tr>
<tr>
<td>MacDonald et al.</td>
<td>2010</td>
<td>RCT</td>
<td>22</td>
<td>62</td>
<td>36</td>
<td>PerAF</td>
<td>10</td>
</tr>
</tbody>
</table>
Freedom from recurrent arrhythmia after RFCA of AF in pts with left ventricular dysfunction

Success

MacDonald et al.

Choi et al.

De Potter et al.

Khan et al.

Lutomsky et al.

Efremidis et al.

Gentlesk et al.

Hsu et al.

Chen et al.
LVEF Improvement after RFCA of AF

* Significant improvement
AIM OF THE STUDY

We sought to investigate whether catheter ablation is superior to Amiodarone for the treatment of persistent AF in patients with Heart Failure (HF) in a randomized trial.
Methods

• AATAC was a randomized, parallel-group, multicenter study assessing whether catheter ablation is superior to amiodarone for the treatment of AF

• Power Calculation: 100 patients per group were required to detect at least 20% difference (30% to 50%) at 24 month follow-up with 5% alpha and 80% power, using log-rank test

• 203 patients were enrolled in the study and randomly assigned (1:1 ratio) to:
 • Undergo catheter ablation (Group I, n=102)
 • Or receive amiodarone, (group 2=101)

• Patients ≥18 years of age, with persistent AF, having dual chamber ICD or CRTD, NYHA II-III and LV EF ≤40% within the last 6 months were included in this trial
Methods

• Primary Endpoint: Long-term procedural-success
 – Procedural success was defined as freedom from AF, AFL, or AT of > 30 second duration off-AAD
 – In the ablation arm, a second ablation was allowed in the 3-month blanking period, and any AT after was considered as recurrence

• Secondary endpoints included:
 – All-cause mortality;
 – Cardiac related re-hospitalizations during post-ablation follow-up (AF/CHF related);
 – Change in LVEF;
 – 6-minute walk distance (6MWD);
 – Quality of Life measured by Minnesota Living with Heart Failure questionnaire (MLHFQ).
Methods

203 Patients Enrolled
(≥18 years, persistent AF, dual chamber ICD or CRTD, NYHA II-III, LV EF ≤40%)

Randomized 1:1

Catheter Ablation (Group 1): n=102

Amiodarone (group 2): n=101

Baseline:
LVEF, 6MWD, MLHFQ

End of Trial:
LVEF, 6MWD, MLHFQ

MO- month, 6MWD – 6 minute walk distance,
MLHFQ - Minnesota Living with Heart Failure questionnaire
The main goal of the ablation procedure was pulmonary vein antrum isolation.

Additional linear lesions, ablation of complex fractionated electrograms and elimination of non PV triggers were advised but performed according to the preference of the center or the operator.
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (Cather Ablation, n=102)</th>
<th>Group 2 (Amiodarone, n=101)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs</td>
<td>62±10</td>
<td>60±11</td>
<td>0.18</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>77(75%)</td>
<td>74(73%)</td>
<td>0.72</td>
</tr>
<tr>
<td>AF Duration, month (median, IQR)</td>
<td>8.6±3.2</td>
<td>8.4±4.1</td>
<td>0.69</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>30±8</td>
<td>29±4</td>
<td>0.26</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>46(45%)</td>
<td>48(48%)</td>
<td>0.73</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>22(22%)</td>
<td>24(24%)</td>
<td>0.72</td>
</tr>
<tr>
<td>Coronary Artery Disease, n (%)</td>
<td>63(62%)</td>
<td>66(65%)</td>
<td>0.59</td>
</tr>
<tr>
<td>LA Diameter, mm</td>
<td>47±4.2</td>
<td>48±4.9</td>
<td>0.12</td>
</tr>
<tr>
<td>LV EF, %</td>
<td>29±5</td>
<td>30±8</td>
<td>0.32</td>
</tr>
<tr>
<td>OSA</td>
<td>46(45%)</td>
<td>48(48%)</td>
<td>0.73</td>
</tr>
<tr>
<td>6MWD (m)</td>
<td>348±111</td>
<td>350±130</td>
<td>0.89</td>
</tr>
<tr>
<td>MLHFQ Score</td>
<td>52±24</td>
<td>50±27</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Results

• Group 1 and 2 did not differ in their baseline characteristics:
 – Left atrium size (47±4.2 mm, 48±4.9 mm, p=0.12)
 – median AF duration (8.6±3.2, 8.4±4.1 months, p=0.69)
 – LVEF (29±5%, 30±8%, p=0.32)
Results: Arrhythmia Recurrence

• Long-term Follow-up
 – No patient lost to follow-up; all patients had ≥6 month follow-up

• Freedom from recurrence at 26±8 month:
 – 71(70%) in group 1 (ablation arm)
 – 34(34%) patients in group 2 (log-rank p <0.001)
 – In Group 2 (AMIO): 7 (10.4%) failed after amiodarone discontinuation due to adverse side effects
 – 4 had thyroid toxicity, 2 pulmonary toxicity, and 1 patient developed liver dysfunction
Kaplan–Meier curves comparing success rate

70% in group 1, 34% patients in group 2 were recurrence-free
Results: Arrhythmia Recurrence

- In the 102 patients undergoing catheter ablation,
 - PVI plus posterior wall and non pv trigger ablation was done in 80 patients
 - PVI alone was performed in 22
- Higher success rate in patients undergoing PVI plus ablation compared to PVI alone
 - PVI+PW: 63 (78.8%)
 - PVI alone: 8 (36.4%), p <0.001
Predictors of Recurrence: univariate model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hazard Ratio (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone Treatment</td>
<td>3.00 (1.96 to 4.61)</td>
<td><.0001</td>
</tr>
<tr>
<td>Sex</td>
<td>1.14 (0.92 - 1.41)</td>
<td>0.219</td>
</tr>
<tr>
<td>Age, years</td>
<td>0.99 (0.98 to 1.019)</td>
<td>0.940</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>0.99 (0.94 - 1.03)</td>
<td>0.587</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>0.96 (0.93 - 0.99)</td>
<td>0.012</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.12 (0.93 - 1.36)</td>
<td>0.241</td>
</tr>
<tr>
<td>LA Size, cm</td>
<td>1.02 (0.99 - 1.05)</td>
<td>0.180</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>0.84 (0.56 - 1.3)</td>
<td>0.360</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>2.22 (1.31 - 3.75)</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Predictors of Recurrence

• Multivariate analysis was performed using Cox model

• After adjusting for age, gender, diabetes, and hypertension:

 – Patients on amiodarone therapy were 2.5 times more likely to fail (HR 2.5 [95% CI 1.5 to 4.3], p <0.001)

 – Diabetes mellitus was associated with higher recurrence (HR 1.1 [95% CI 1.07 to 1.26], p=0.01)
Change in LVEF, 6MWD, and MLHFQ score by recurrence status

At baseline the LVEF, 6MWD, and MLHFQ scores were not different between catheter ablation and amiodarone groups.

At the end of follow-up, recurrence free patients (n=105) experienced significantly better improvement in all parameters compared to those who experienced recurrence (n=98).

- LVEF improved 9.6±7.4%, vs. 4.2±6.2% (p<0.001),
- 6MWD changed 27±38 vs. 8±42 (p<0.001),
- MLHFQ score reduced 14±18 vs. 2.9±15 (p<0.001) in recurrence-free versus patients with recurrence

LVEF- left ventricular ejection fraction
6MWD – 6 minute walk distance
MLHFQ - Minnesota Living with Heart Failure questionnaire
Change in LVEF, 6MWD, and MLHFQ score by recurrence status

<table>
<thead>
<tr>
<th>Measures</th>
<th>No Recurrence (n=105)</th>
<th>Recurrence (n=98)</th>
<th>P for change between groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Change</td>
<td>Baseline</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>28.8±10</td>
<td>9.6±7.4</td>
<td>30.2±9</td>
</tr>
<tr>
<td>6MWD (meter)</td>
<td>410±102</td>
<td>18±40</td>
<td>413±111</td>
</tr>
<tr>
<td>MLHFQ Score</td>
<td>53±24</td>
<td>-6±13</td>
<td>49±26</td>
</tr>
</tbody>
</table>

LVEF - left ventricular ejection fraction
6MWD – 6 minute walk distance
MLHFQ - Minnesota Living with Heart Failure questionnaire
Data are summarized as mean ± standard deviation
Results:

- **MLHFQ scores**
 - **Success**
 - Baseline: 28.8
 - Follow-up: 30.2
 - **Recurrence**
 - Baseline: 53
 - Follow-up: 352

- **6MWD (meter)**
 - **Success**
 - Baseline: 347
 - Follow-up: 374
 - **Recurrence**
 - Baseline: 49
 - Follow-up: 34.6

- **LVEF (%)**
 - **Success**
 - Baseline: 374
 - Follow-up: 360
 - **Recurrence**
 - Baseline: 53
 - Follow-up: 352
Hospitalization and Mortality

• Over the 2 year follow-up:
 – Hospitalization rate substantially lower in Group 1 (32 [31%] vs. 58 [57%] in group 2, p <0.001)
 – All-cause Mortality in
 – Group 1 (8 [8%]) and 18 [18%] group 2, log-rank p=0.037);
CONCLUSIONS

- This multicenter randomized study shows that catheter ablation of Persistent AF is superior to Amiodarone in achieving freedom from AF at long term follow up and reducing hospitalization and mortality in patients with heart failure.

- The potential socio-economic repercussion of these results will require further investigation.
Ablation vs. Amiodarone for Treatment of Atrial Fibrillation in Patients with Congestive Heart Failure and an Implanted ICD/CRTD (AATAC-AF in Heart Failure)

ClinicalTrials.gov Identifier: NCT00729911/ P.I. Andrea Natale

Luigi Di Biase, Prasant Mohanty, Sanghamitra Mohanty, Pasquale Santangeli, Chintan Trivedi, Dhanunjaya Lakkireddy, Madhu Reddy, Pierre Jais, Sakis Themistoclakis, Antonio Dello Russo, Michela Casella, Gemma Pelargonio, Maria Lucia Narducci, Robert Schweikert, Petr Neuzil, Javier Sanchez, Rodney Horton, Salwa Beheiry, Richard Hongo, Steven Hao, Antonio Rossillo, Giovanni Forleo, Claudio Tondo, J. David Burkhardt, Michel Haissaguerre, Andrea Natale

- Texas Cardiac Arrhythmia Institute at St. David’s Medical Center, Austin, Texas, USA;
- California Pacific Medical Center, San Francisco, California, USA;
- University of Kansas, Kansas City, USA;
- University of Sacred Heart, Rome, Italy;
- University of Tor Vergata, Rome, Italy;
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy;
- Ospedale dell’ Angelo, Mestre, Venice, Italy;
- Hôpital Cardiologique du Haut Lévêque, Université Victor-Segalen Bordeaux, France;
- Akron General Hospital, Akron, Ohio, USA;
- Department of Cardiology, Na Homolce Hospital, Roentgenova 2, Prague, Czech Republic